Sub-workflows
Overview
Teaching: 20 min
Exercises: 0 minQuestions
How do I reuse a workflow as part of a larger workflow?
How do I run only a part of a workflow?
Objectives
Understand how to create a sub-workflow.
Understand how to run part of a workflow.
Sub-workflows
We have seen previously the Nextflow allows for the definition of reusable processes (modules). Nextflow also allows to define reusable sub-workflows.
Workflow definition
The workflow
keyword allows the definition of workflow components that enclose the invocation of one or more processes
and operators
.
For example:
nextflow.enable.dsl=2
include {QUANT;INDEX} from './modules/module.nf'
workflow RNASEQ_QUANT_PIPE {
read_pairs_ch = channel.fromFilePairs('data/yeast/reads/*_{1,2}.fq.gz')
transcriptome_ch = channel.fromPath('data/yeast/transcriptome/*.fa.gz')
QUANT(INDEX(transcriptome_ch), read_pairs_ch)
}
The above snippet defines a workflow component, named RNASEQ_QUANT_PIPE
, that can be invoked from another workflow component definition in the same way as any other function or process
i.e. RNASEQ_QUANT_PIPE()
.
nextflow.enable.dsl=2
include {QUANT;INDEX} from './modules/module.nf'
workflow RNASEQ_QUANT_PIPE {
read_pairs_ch = channel.fromFilePairs('data/yeast/reads/*_{1,2}.fq.gz')
transcriptome_ch = channel.fromPath('/data/yeast/transcriptome/*.fa.gz')
QUANT(INDEX(transcriptome_ch),read_pairs_ch)
}
// Implicit workflow
workflow {
/*
* Call sub-workflow using <WORKFLOWNAME>() syntax
*/
RNASEQ_QUANT_PIPE()
}
Implicit workflow
A workflow definition which does not declare any name is assumed to be the main workflow, and it is implicitly executed. Therefore it’s the entry point of the workflow application.
Workflow parameters
A workflow component can access any variable and parameter defined in the outer scope.
For example:
nextflow.enable.dsl=2
include {QUANT;INDEX} from './modules/module.nf'
params.transcriptome = '/some/data/file'
read_pairs_ch = channel.fromFilePairs('data/yeast/reads/*_{1,2}.fq.gz')
workflow RNASEQ_QUANT_PIPE {
transcriptome_ch = channel.fromPath(params.transcriptome)
QUANT(INDEX(transcriptome_ch),read_pairs_ch)
}
Workflow inputs
A workflow component can declare one or more input channels using the take
keyword.
For example:
nextflow.enable.dsl=2
include {QUANT;INDEX} from './modules/rnaseq-tasks.nf'
read_pairs_ch = channel.fromFilePairs('data/yeast/reads/*_{1,2}.fq.gz')
transcriptome_ch = channel.fromPath('data/yeast/transcriptome/*.fa.gz')
workflow RNASEQ_QUANT_PIPE {
take:
transcriptome_ch
read_pairs_ch
main:
INDEX(transcriptome_ch)
QUANT(INDEX.out,read_pairs_ch)
}
Warning
When the
take
keyword is used, the beginning of the workflow body needs to be identified with themain
keyword. Then, the input can be specified as an argument in the workflow invocation statement:
These input channels can then be passed to the workflow as parameters inside the ()
. Multiple parameters are separated by a comma ,
and must be specified in the order they appear under take
:
nextflow.enable.dsl=2
read_pairs_ch = channel.fromFilePairs('data/yeast/reads/*_{1,2}.fq.gz')
transcriptome_ch = channel.fromPath('data/yeast/transcriptome/*.fa.gz')
workflow RNASEQ_QUANT_PIPE {
take:
transcriptome_ch
read_pairs_ch
main:
INDEX(transcriptome_ch)
QUANT(INDEX.out,read_pairs_ch)
}
workflow {
RNASEQ_QUANT_PIPE(transcriptome_ch,read_pairs_ch)
}
Note
Workflow inputs are by definition channel data structures. If a basic data type is provided instead, ie. number, string, list, etc. it’s implicitly converted to a channel value (i. e. non-consumable).
Workflow outputs
A workflow component can declare one or more output channels using the emit
keyword.
For example:
nextflow.enable.dsl=2
include {QUANT;INDEX} from './modules/module.nf'
params.transcriptome = '/some/data/file'
read_pairs_ch = channel.fromFilePairs('data/yeast/reads/*_{1,2}.fq.gz')
workflow RNASEQ_QUANT_PIPE {
take:
transcriptome_ch
read_pairs_ch
emit:
QUANT.out
main:
INDEX(transcriptome_ch)
QUANT(INDEX.out,read_pairs_ch)
}
The above script declares one output, QUANT.out
.
The result of the RNASEQ_QUANT_PIPE
execution can be accessed using the out
property i. e. RNASEQ_QUANT_PIPE.out
.
When there are multiple output channels declared, use the array bracket notation to access each output component as described for the Process outputs definition.
RNASEQ_QUANT_PIPE.out[0]
RNASEQ_QUANT_PIPE.out[1]
Alternatively, the output channel can be accessed using a name which it’s assigned to in the emit declaration:
For example:
nextflow.enable.dsl=2
workflow RNASEQ_QUANT_PIPE {
main:
INDEX(transcriptome_ch)
QUANT(INDEX.out,read_pairs_ch)
emit:
read_quant = QUANT.out
}
The output QUANT.out
is assigned the name read_quant
The the result of the above snippet can accessed using:
RNASEQ_QUANT_PIPE.out.read_quant
Note
Implicit workflow definition is ignored when a script is included as module. This allows the writing a workflow script that can be used either as a library module or as an application script.
Workflow composition
As with modules
workflows components can be defined within your script or imported by a include
statment. After which they can be invoked and composed as any other workflow component
or process in your script.
nextflow.enable.dsl=2
// file ./modules/qc.nf
include {FASTQC} from './modules.nf'
workflow READ_QC_PIPE {
take:
read_pairs_ch
quant_out_ch
main:
FASTQC(read_pairs_ch)
emit:
FASTQC.out
}
nextflow.enable.dsl=2
include { READ_QC_PIPE } from './modules/qc.nf'
include { QUANT; INDEX } from './modules/module.nf'
include { MULTIQC } from './modules/multiqc.nf'
workflow RNASEQ_QUANT_PIPE {
take:
transcriptome_ch
read_pairs_ch
main:
INDEX(transcriptome)
QUANT(INDEX.out)
emit:
QUANT.out
}
params.transcriptome = '/some/data/file'
read_pairs_ch = channel.fromFilePairs('data/yeast/reads/*_{1,2}.fq.gz')
transcriptome_ch = channel.fromPath(params.transcriptome)
workflow {
take:
transcriptome_ch
read_pairs_ch
main:
RNASEQ_QUANT_PIPE(transcriptome_ch, read_pairs_ch)
READ_QC_PIPE(read_pairs_ch, RNASEQ_QUANT_PIPE.out)
MULTIQC(RNASEQ_QUANT_PIPE.out.mix(READ_QC_PIPE).collect())
}
Nested workflow execution
Nested workflow execution determines an implicit scope. Therefore the same process can be invoked in two different workflow scopes, like for example in the above snippet
INDEX
could be used either inRNASEQ_QUANT
andRNASEQ_QC
. The workflow execution path along with the process names defines the process fully qualified name that is used to distinguish the two different process invocations i.e.RNASEQ_QUANT:INDEX
andRNASEQ_QC:INDEX
in the above example.
Specific workflow entry points
By default, the unnamed workflow is assumed to be the main entry point for the script. Using named workflows, the entry point can be customised by using the entry
option of the run
command. This allows users to run a specific sub-workflow or a section of their entire workflow script.
For example:
$ nextflow run main.nf -entry RNASEQ_QUANT_PIPE
The above command would run the RNASEQ_QUANT_PIPE
sub-workflow.
Key Points
Nextflow allows to define reusable sub-workflows.
Sub-workflow allows the definition of workflow processes that can be included from any other script and invoked as a custom function within the new workflow scope. This enables reuse of workflow components
The
entry
option of the nextflowrun
command specifies the workflow name to be executed